Distributional Effects of Subsidizing Retirement Savings Accounts: Evidence from Germany

Giacomo Corneo, Johannes Koenig, Carsten Schroeder

28. März 2018

イロン イヨン イヨン 一日

Funded by Research Network Old-age Provision of German Pension Insurance (FNA).

- Corneo, C., Koenig, J., and Schroeder, C. (forthcoming): Distributional Effects of Subsidizing Retirement Savings Accounts: Evidence from Germany, *Public Finance Analysis*.
- Koenig, J., and Schroeder, C. (forthcoming): Inequality-minimization with a given Public Budget, *Journal* of Economic Inequality.
- Corneo, C., Koenig, J., and Schroeder, C.: Cui Prodest The Distributive Effect of the Riester Scheme, *Final Report for FNA*.

Many countries provide financial incentives to stimulate private savings for retirement.

- Germany's incentive system, introduced in 2002: Riester scheme
 - A "compensation" for lowered replacement rate in statutory system.
 - ► Focused on low-income households (with children).

- Entitled: dependent employees
- Participation: voluntary
- Accounts: individual and capitalized
- Subsidization designed to particularly stimulate savings of low-income households
 - (a) Basic (€154) and child allowance (€180); (b) income tax rebate (favorable for high income households).
 - ► Full subsidy requires minimum savings effort (4% of earnings).
- Riester pension: part of taxable income; charged against basic provision

Does the Riester subsidy reach the low-income households?

 Cross-sectional view focusing on households before retirement

Net equivalent household income¹ distribution including Riester subsidy

VS.

Net equivalent household income distribution excluding Riester subsidy

The more of the subsidy goes to low income households, the more progressive is the Riester scheme.

¹Equivalent net income is the ratio of net income, y_i , and the household's equivalence scale, e_i .

Panel on Household Finances (PHF)

Why PHF?

 Detailed individual-level information on Riester contracts (amount saved) allows direct computation of subsidy.

	Overall Population						
Measure	woR	wR – woR	wD	wR – wD			
Gini	32.960	-0.014*	32.899	0.048*			
	(0.173)	(0.002)	(0.173)	(0.002)			
Theil	18.534	-0.018*	18.461	0.054*			
	(0.234)	(0.002)	(0.233)	(0.003)			
HCR	12.237	0.798*	12.052	0.983*			
	(0.166)	(0.158)	(0.196)	(0.124)			
IGR	35.589	-2.144*	35.692	-2.248 [*]			
	(1.172)	(0.382)	(1.232)	(0.291)			
Sen	6.236	0.153*	6.145	0.244*́			
	(0.205)	(0.036)	(0.202)	(0.032)			

Note. PHF 2010. Own calculations. * Significance of differences at 5%-level. Standard errors in parentheses. wR (woR) refers to the income distribution with(out) Riester subsidy; wD: demogrant (about \in 50 in equivalent inc. units).

For the overall population ...

- distributional effect is almost zero.
- subsidy is even less targeted than a demogrant.
- subsidy slightly increases incidence and decreases intensity of poverty.

Qualitative results are the same for the eligible population.

Key for the distributional effect is how the **subsidy rate** changes along the deciles of equivalent income (pre subsidy). The **subsidy rate** of a decile is,

$$\sigma = \frac{\sum_{i=1}^{N} s_i}{\sum_{i=1}^{N} y_i}$$

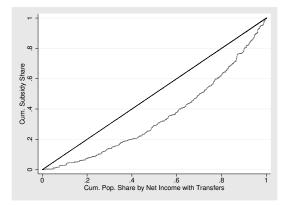
- s_i: subsidy amount received by beneficiary i
- y_i: pre-subsidy income
- ► *N*: number of observations in a decile.

Cross Section – Proximate Causes

Decomposing the decile-specific subsidy rate:

$$\sigma = \underbrace{\frac{\sum_{i=1}^{M} s_i}{\sum_{i=1}^{M} y_i}}_{= \sigma_M} \times \underbrace{\frac{M}{N}}_{\mu} \times \underbrace{\frac{N}{\sum_{i=1}^{N} y_i}}_{X} \times \underbrace{\frac{\sum_{i=1}^{M} y_i}{M}}_{X}$$

- ▶ *N*: number of households in decile; $M \le N$: beneficiaries
- σ_M : subsidy rate among *M* beneficiaries in decile
- μ : participation rate in decile
- $\frac{\bar{Y}_M}{\bar{Y}}$: mean eq. inc. of beneficiaries to mean in decile


Cross Section – Decomposition of subsidy rate

Decile		Overall F	opulation			Eligible P	opulation	
	σ	σ_M	μ	\bar{Y}_M/\bar{Y}	σ	σ_M	μ	\bar{Y}_M/\bar{Y}
1	0.449	4.982	0.077	1.160	0.712	4.652	0.147	1.038
	(0.081)	(0.599)	(0.006)	(0.043)	(0.095)	(0.313)	(0.012)	(0.034)
2	0.215	3.166	0.066	1.021	0.505	2.749	0.182	1.013
	(0.048)	(0.292)	(0.011)	(0.011)	(0.054)	(0.125)	(0.018)	(0.009)
3	0.280	2.153	0.127	1.020	0.610	2.132	0.286	1.003
	(0.032)	(0.108)	(0.013)	(0.007)	(0.055)	(0.136)	(0.024)	(0.004)
4	0.294	2.049	0.144	0.998	0.493	1.742	0.282	1.001
	(0.023)	(0.131)	(0.014)	(0.006)	(0.054)	(0.130)	(0.013)	(0.004)
5	0.324	1.914	0.168	1.007	0.507	1.489	0.341	0.998
	(0.024)	(0.120)	(0.005)	(0.003)	(0.025)	(0.055)	(0.012)	(0.004)
6	0.242	1.286	0.191	0.984	0.417	1.352	0.306	`1.008 [´]
	(0.022)	(0.069)	(0.011)	(0.003)	(0.025)	(0.062)	(0.013)	(0.002)
7	0.318	1.312	0.243	0.999	0.328	1.085	0.302	`0.999´
	(0.010)	(0.051)	(0.005)	(0.002)	(0.020)	(0.056)	(0.003)	(0.002)
8	0.267	1.187	0.224	1.004	0.423	1.261	0.336	0.998
	(0.012)	(0.038)	(0.009)	(0.003)	(0.025)	(0.035)	(0.019)	(0.004)
9	0.298	1.272	0.237	0.991	0.402	1.323	0.305	0.997
	(0.008)	(0.065)	(0.014)	(0.005)	(0.020)	(0.058)	(0.020)	(0.003)
10	0.247	1.098	0.225	1.000	0.337	1.068	0.317	0.996
	(0.007)	(0.044)	(0.004)	(0.018)	(0.010)	(0.038)	(0.011)	(0.018)
Average	0.293	2.042	0.170	1.018	0.473	1.885	0.280	1.005

- Declining subsidy rate, σ and σ_M, works in favor of a progressive effect.
- Increasing participation rate, μ, works in favor of a regressive effect.

 \Rightarrow Net distributional effect is almost zero.

Cross Section - Concentration of Subsidy

Almost 40% of aggregate subsidy accrues to top two deciles; only 7% to bottom two deciles.

While subsidy level is determined by law, participation is a choice variable. Here we study the drivers of participation w.r.t.

- income
- age
- household composition
- education
- wealth

Cross Section – Participation Decisions in Logit

	Specification (1)	Specification (2)	Specification (3)
log of equivalent net income	0.5778***	0.5419***	0.4679***
	(0.1347)	(0.1429)	(0.1430)
age: 36-45	-0.2373	-0.2140	-0.2340
	(0.1955)	(0.1951)	(0.1954)
age: 46-55	-0.3157	-0.2978	-0.3355
-	(0.2084)	(0.2091)	(0.2103)
age: 56-64	-1.2090***	-1.1800***	-1.2930***
-	(0.2229)	(0.2244)	(0.2336)
single w/ children	0.5783	0.6016*	0.5886*
	(0.3525)	(0.3492)	(0.3470)
couples	0.0672	0.0938	0.0807
	(0.2229)	(0.2229)	(0.2226)
couples w/ children	0.6289***	0.6585***	0.6561***
	(0.2091)	(0.2130)	(0.2115)
more than two adults	0.2943	0.3774	0.3194
	(0.2654)	(0.2635)	(0.2650)
female	0.1004	0.0802	0.0774
	(0.1683)	(0.1705)	(0.1730)
east	0.1700	0.2031	0.2337
	(0.1989)	(0.2044)	(0.2074)
sec. educ. completed	. ,	0.3011	0.2627
		(0.1985)	(0.1978)
tertiary educ. completed		-0.2079	-0.2165
		(0.2347)	(0.2320)
top quintile of net wealth			0.6262***
			(0.2230)
constant	-7.0285***	-6.7657***	-6.0048***
	(1.3835)	(1.4415)	(1.4400)
observations	2043	2043	2043
Efron's R ²	0.065	0.066	0.069

イロト (四) (注) (注) (注)

16/31

- Almost 40% of the subsidy accrues to the top two deciles of the income distribution, but less than 10% to the bottom two.
- Nonetheless, it is almost distributive neutral because two effects offset each other: a progressive effect from the subsidy scheme and a regressive one due to voluntary participation.

What could have been achieved with the same budget in terms of inequality reduction?

- Optimal budget-allocation rule seems trivial: Donate budget to those at the bottom of the distribution, resulting in a truncated distribution.
- Glewwe's puzzle (JPubE, 1991): Rule is appropriate for homogeneous but not for heterogeneous distributions. "Heterogeneous" means differences in household composition and material needs.

Gini coefficient for homogeneous population:

$$G = \frac{1}{N \sum_{i=1}^{N} (y_i + s_i)} \sum_{i=1}^{N} \sum_{i \ge j} ((y_i + s_i) - (y_j + s_j)) \quad (1)$$

$$\Rightarrow \text{Only rank, } i, \text{ matters.}$$

Gini coefficient for heterogeneous population:

$$G = \frac{1}{W\sum_{i=1}^{N} w_i \frac{y_i + s_i}{ES_i}} \sum_{i=1}^{N} \sum_{i \ge j} w_i w_j \left(\frac{y_i + s_i}{ES_i} - \frac{y_j + s_j}{ES_j}\right)$$
(2)

 \Rightarrow Rank, *i*, weight, *w_i*, and needs, *ES_i*, matter.

- Koenig and Schroeder (JOEI, forthcoming) show how to use non-linear optimization techniques to solve Glewwe's (1991) puzzle.
 - If inequality index and set of constraints is convex, interior point algorithm solves the problem.
 - If inequality index is quasiconvex and set of constraints is convex, bisection method solves problem.

		%-change to
	Gini	pre Riester
Pre Riester	0.32960	-
Post Riester	0.32946	-0.0004
Bottom fill-up	0.32663	-0.0090
Bisection Method	0.32633	-0.0099

- Considering not only the pay-in but also the pay-out phase implies additional distributive effects:
 - Beneficiaries have to pay income taxes on the Riester pension.
 - Because income tax is progressive, effect should be progressive .
 - Riester pension is charged against basic provisions in old age.
 - Because the basic provision is provided to poor households, effect should be regressive.

Socio-Economic Panel (Panel)

Why SOEP?

- Panel data tracking households and individuals since 1984 over their life cycles.
- Only overall savings rate is known. We can only estimate the subsidy.

- We use SOEP to construct the distribution of present values of lifetime equivalent incomes for the birth cohorts 1960 -1965 (base year: 2012).
- We analyze the overall effect of Riester along this lifetime distribution.
- To our knowledge, this is the first estimation of household lifetime incomes in Germany.
- Requires ...
 - backward imputations and forward prediction of household biographies.
 - modeling of tax-benefit system over the whole life cycle.
- ... and each modeling step requires assumptions.

	Lifetime	e income	Riester benefits				
	Rie	Riester		pay-out	net		
	incl.	excl.	phase	phase			
	Overall population						
Mean	1,379,649	1,380,816	1,238	71	1,167		
Gini	0.18738	0.18735	0.75846	0.82253	0.77025		
Participating households							
Mean	1.422.834	1.424.827	2.114	122	1.993		

This research

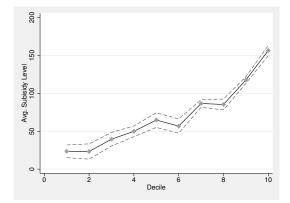
- Hardly any distributive effect neither cross-sectional nor longitudinal.
- Previous researchs
 - Riester does not create additional savings as households just substitute subsidized by non-subsidized savings contracts.
 - Interest on savings in the contracts is low.
- Given limited effectiveness and high economic costs (subsidy, distortions, admin.) it is hard to justify the scheme in its present form.

Cross Section - Descriptive Results Overall Population

	mean	std. error	min	max	obs.
equivalent gross household income with transfers wi- thout Riester subsidy	28957	450.756	850	324800	3565
equivalent net household income with transfers wi- thout Riester subsidy	25274	334.426	518	221772	3565
number of household members	2.044	0.005	1	8	3565
married ^c	0.495	0.008	0	1	3565
age ^c	52.28	0.127	18	90	3565
female ^c	0.350	0.006	0	1	3565
completed vocational training ^c	0.518	0.011	0		3565
completed extended vocational training ^c	0.178	0.009	0	1	3565
completed university degree ^c	0.135	0.007	0	1	3565
access to tertiary education ^c	0.295	0.003	0	1	3565
estimated subsidies and subsidy rates					
fraction of households participating in the Riester scheme ^a	0.170	0.009	0	1	3565
level of Riester subsidy ^b	70.375	4.547	0	1764	3565
ratio of subsidy to net household income in %	0.184	0.017	0	17.111	3565

Note. PHF 2010. Own calculations. 1,000 bootstrap replicate weights used to compute standard errors.

^a The participation variable is a dummy variable that indicates whether at least one household member currently pays into a Riester contract.


^b The sum of the Riester subsidies of all tax units within a household.

^c Variable refers to the household head.

Cross Section – Descriptives eligible population

	mean	std. error	min	max	obs.
equivalent gross household income with transfers wi- thout Riester subsidy	32168	644.275	850	324800	2106
equivalent net household income with transfers wi- thout Riester subsidy	27533	454.152	518	221772	2106
number of household members	2.364	0.018	1	8	2106
married	0.538	0.013	0	1	2106
age	43.29	0.210	18	90	2106
female	0.311	0.010	0	1	2106
completed vocational training	0.545	0.013	0	1	2106
completed extended vocational training	0.177	0.012	0	1	2106
completed university degree	0.146	0.010	0	1	2106
access to tertiary education	0.330	0.007	0	1	2106
estimated subsidies and subsidy rates					
fraction of households participating in the Riester scheme	0.280	0.014	0	1	2106
level of Riester subsidy	115.940	7.419	0	1764	2106
ratio of subsidy to net household income in %	0.303	0.028	0	17.111	2106

Cross Section – Subsidization along Income Distribution

 \Rightarrow Subsidy amount increases over deciles of net income distribution.

Cross Section – Distributive Effect

Eligible Population						
Measure	woR	wR – woR	wD	wR – wD		
Gini	31.750	-0.031*	31.693	0.026*		
	(0.112)	(0.003)	(0.112)	(0.003)		
Theil	17.131	-0.035*	17.067	0.029*		
	(0.173)	(0.003)	(0.172)	(0.004)		
HCR	10.444	0.253	10.301	0.396*		
	(0.286)	(0.167)	(0.328)	(0.117)		
IGR	33.010	-0.875	33.030	-0.895*		
	(2.155)	(0.491)	(2.258)	(0.344)		
Sen	4.943	0.035	4.871	0.107*		
	(0.216)	(0.037)	(0.214)	(0.031)		

Уi	Wi	ES_i	y_i/ES_i	t _{b. fill-up}	t _{opt}
180	4	2	90	73.34	100
100	1	1	100	26.66	0
400	3	1.8	160	0	0
300	1	1	300	0	0
450	2	1.5	300	0	0
800	4	2	400	0	0
600	1	1	600	0	0
1100	1	1	1100	0	0
Gini				0.3415	0.3381

Tabelle: Synthetic Data